
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Taxonomy research of artificial intelligence for deterministic solar power forecasting
With the world-wide deployment of solar energy for a sustainable and renewable future, the stochastic and volatile nature of solar power pose significant challenges to the reliable, economic and secure operation of electrical energy systems. It is therefore imperative to improve the prediction accuracy of solar power to prepare for the unknown conditions in the future. So far, artificial intelligence (AI) algorithms such as machine learning and deep learning have been widely-reported with competitive prediction performance because they can reveal the invariant structure and nonlinear features in solar data. However, these reports have not been fully reviewed. Accordingly, this paper provides a taxonomy research of the existing solar power forecasting models based on AI algorithms. Taxonomy is a process of systematically dividing solar energy prediction methods, optimizers and prediction frameworks into several categories based on their differences and similarities. We also present the challenges and potential future research directions in solar power forecasting based on AI algorithms. This review can help scientists and engineers to theoretically analyze the characteristics of various solar prediction models, thereby helping them to select the most suitable model in any application scenario.

» Author: Huaizhi Wang, Yangyang Liu, Bin Zhou, Canbing Li, Guangzhong Cao, Nikolai Voropai, Evgeny Barakhtenko
» Publication Date: 15/06/2020
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
