
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Short-term stochastic optimization of a hydro-wind-photovoltaic hybrid system under multiple uncertainties
With the increasing emphasis on environmental problems and climate change, renewable energy sources have been developed globally to push modern power systems towards sustainability. However, the weather-dependent and non-dispatchable features of renewable energy sources often hinder their integration into power grids and also pose a challenge for peak load regulation. Recently, the complementary operation of multi-energy hybrid systems has been attracting increasing attention as a promising way to overcome the mismatch between renewable energy supply and varying load demand. Multi-energy systems should be operated considering multiple uncertainties since a deterministic method only captures a fixed snapshot of a constantly changing system. In this study, the obtained short-term peak shaving operation of a hydro-wind-photovoltaic hybrid system is developed as a stochastic programming model. The uncertainties of renewable energy production and load demand are thoroughly simulated in the form of synthetic ensemble forecasts and scenario trees. To enhance the computational efficiency, a parallel particle swarm optimization algorithm is developed to solve the stochastic peak shaving model, in which a novel encoding scheme and parallel computing strategy are used. The proposed framework is applied to a hydro-wind-photovoltaic hybrid system of the East China Power Grid. The results of three numerical experiments indicate that the framework can achieve satisfactory peak shaving performance of the power system and enable decision makers to examine the robustness of operational decisions. In addition, it is acceptable for decision makers that joint complementary operation of the hybrid system greatly enhances the peak shaving capacity (with the performance metrics being improved by 95.7%, 96.4% and 30.5%) at the cost of 0.11% loss of total power generation.

» Author: Feilin Zhu, Ping-an Zhong, Bin Xu, Weifeng Liu, Wenzhuo Wang, Yimeng Sun, Juan Chen, Jieyu Li
» Publication Date: 15/06/2020
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
