AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Multi-part and scale adaptive visual tracker based on kernel correlation filter
Accurate visual tracking is a challenging issue in computer vision. Correlation filter (CF) based methods are sought in visual tracking based on their efficiency and high performance. Nonetheless, CF-based trackers are sensitive to partial occlusion, which may reduce their overall performance and even lead to failure in tracking challenge. In this paper, we presented a very powerful tracker based on the kernelized correlation filter tracker (KCF). Firstly, we employ an intelligent multi-part tracking algorithm to improve the overall capability of correlation filter based tracker, especially in partial-occlusion challenges. Secondly, to cope with the problem of scale variation, we employ an effective scale adaptive scheme, which divided the target into four patches and computed the scale factor by finding the maximum response position of each patch via kernelized correlation filter. With this method, the scale computation was transformed into locating the centers of the patches. Thirdly, because the small deviation of the central function value will bring the problem of location ambiguity. To solve this problem, the new Gaussian kernel functions are introduced in this paper. Experiments on the default 51 video sequences in Visual Tracker Benchmark demonstrate that our proposed tracker provides significant improvement compared with the state-of-art trackers.
» Author: Mingqi Luo, Bin Zhou, Tuo Wang
» Reference: https://doi.org/10.1371/journal.pone.0231087
» Publication Date: 13/04/2020
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es