
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Widespread monitoring of chiral pharmaceuticals in urban rivers reveals stereospecific occurrence and transformation
The present work aimed to discuss the enantiomeric occurrence of chiral pharmaceuticals including 5 parent compounds (PCs) metoprolol, propranolol, atenolol, venlafaxine and fluoxetine as well as 6 of their transformation products (TPs) in surface water in Beijing. Among which, 9 out of 11 were detected during the two sampling campaigns with N-O-Didesmethylvenlafaxine (NODDV) and ?-hydroxymetoprolol confirmed in the catchment for the first time. Metoprolol acid (MTPA) was the most abundant up to 1508?ng?L?1, followed by metoprolol and O-desmethylvenlafaxine (ODV). Most compounds showed 100% detection frequency or nearly, while norfluoxetine (the main metabolite of fluoxetine) and 4-hydroxypropranololone (one TP of propranolol) were not detected. Metoprolol (MTP) and venlafaxine (VFX) did not vary significantly between two sampling periods with mean concentrations of 280.7 and 22.9?ng?L?1, respectively. Enantiomeric enrichment was observed for venlafaxine, metoprolol and NODDV, where R-venlafaxine was preferentially biotransformed than the S-form through O-desmethylation. Risk assessment indicated that fluoxetine and atenolol could pose harmful effects to aquatic organisms. This work provides enantiospecific profiles of pharmaceutically active compounds (PhACs), and extended the concept of applying the ratio of TPs vs. parent compound plus their enantiomeric traits for quantitative assessment of in situ biodegradation. Due to the considerable contribution by TPs (64% in present study) as well as the unexpected impacts from enantiomeric existence, the stereoselectivity of chiral pollutants during environmental process should be taken into account in future study. To the best of the authors? knowledge, it is the first comprehensive evaluation of chiral pharmaceuticals and transformation products at enantiomeric level in aquatic environment in China, which would facilitate better understanding of their environmental fate.

» Author: Ruixue Ma, Han Qu, Bin Wang, Fang Wang, Gang Yu
» Publication Date: 01/05/2020
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
