
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Multi-peptide presentation and hydrogel mechanics jointly enhance therapeutic duo-potential of entrapped stromal cells
The native extracellular matrix (ECM) contains a host of matricellular proteins and bioactive factors that regulate cell behavior, and many ECM components have been leveraged to guide cell fate. However, the large size and chemical characteristics of these constituents complicate their incorporation into biomaterials without interfering with material properties, motivating the need for alternative approaches to regulate cellular responses. Mesenchymal stromal cells (MSCs) can promote osseous regeneration in vivo directly or indirectly through multiple means including (1) secretion of proangiogenic and mitogenic factors to initiate formation of a vascular template and recruit host cells into the tissue site or (2) direct differentiation into osteoblasts. As MSC behavior is influenced by the properties of engineered hydrogels, we hypothesized that the biochemical and biophysical properties of alginate could be manipulated to promote the dual contributions of encapsulated MSCs toward bone formation. We functionalized alginate with QK peptide to enhance proangiogenic factor secretion and RGD to promote adhesion, while biomechanical-mediated osteogenic cues were controlled by modulating viscoelastic properties of the alginate substrate. A 1:1 ratio of QK:RGD resulted in the highest levels of both proangiogenic factor secretion and mineralization in vitro. Viscoelastic alginate outperformed purely elastic gels in both categories, and this effect was enhanced by stiffness up to 20?kPa. Furthermore, viscoelastic constructs promoted vessel infiltration and bone regeneration in a rat calvarial defect over 12 weeks. These data suggest that modulating viscoelastic properties of biomaterials, in conjunction with dual peptide functionalization, can simultaneously enhance multiple aspects of MSC regenerative potential and improve neovascularization of engineered tissues.

» Author: Ben P. Hung, Tomas Gonzalez-Fernandez, Jenny B. Lin, Takeyah Campbell, Yu Bin Lee, Alyssa Panitch, Eben Alsberg, J. Kent Leach
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
