
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
PB@PDA@Ag nanosystem for synergistically eradicating MRSA and accelerating diabetic wound healing assisted with laser irradiation
The ever-growing threats of multidrug-resistant bacterial infection and chronic wound healing have created an imperative need for the development of novel antibacterial materials and therapeutic strategies, especially for diabetic patients infected with multidrug-resistant bacteria. In this work, the nanocomplexes named as [email protected]@Ag were used for eradicating multidrug-resistant bacteria and accelerating wound healing of MRSA-infected diabetic model with the assistance of laser irradiation. In vitro results revealed that the combinational strategy exerted a synergistic effect for anti-MRSA through disrupting cell integrity, producing ROS, declining ATP, and oxidizing GSH, comparing with [email protected]@Ag or NIR laser irradiation alone. Moreover, in vivo assay demonstrated that this system effectively accelerated MRSA-infected diabetic wound healing by mitigating local inflammatory response and up-regulating VEGF expression on the wound bed. Meanwhile, satisfactory biocompatibility and negligible damage to major organs were observed. Altogether, the aforementioned results indicate that the combinational therapy of [email protected]@Ag and NIR irradiation shows a great potential application in the field of clinic infection.

» Author: Chunyi Tong, Xianghua Zhong, Yuejun Yang, Xu Liu, Guowei Zhong, Chang Xiao, Bin Liu, Wei Wang, Xiaoping Yang
» Reference: 10.1016/j.biomaterials.2020.119936
» Publication Date: 01/06/2020
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
