
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Impact of pore structure on hydroxyapatite supported nickel catalysts (Ni/HAP) for dry reforming of methane
The hierarchical supports have motivated intensive research interests of chemists in the catalytic field because of the rational combination of mass transport property and large surface area. In this work, hydroxyapatite (HAP) supported nickel catalysts were prepared and employed to promote the dry reforming of methane (DRM). The proportion of mesopore/macropore in HAP was adjusted by the heating temperature (20, 50, 80, 120??C) during the preparation process. The pore structure played an important role in regulating the physiochemical properties and thus affecting the catalytic performance in DRM. With increasing the proportion of mesopore on HAP, Ni preferentially dispersed on mesopore channel to form small-size particles. All catalysts possessed weak interaction between Ni nanoparticles and HAP; however, the interaction enhanced gradually with decreasing the Ni particles diameter. High proportion of macropore led to large-size Ni nanoparticle, while high proportion of small-size mesopore at 2?5?nm resulted in the complete blockage of these pore structures. These two boundary situations led to relatively weak interaction between nickel particles and the support, low metal dispersion and hence low activity as well as rapid deactivation in the DRM evaluation. Ni nanoparticles on HAP-80 and HAP-120 supports possessed relatively higher dispersion, which imparted these two catalysts with the function of strong anti-sintering ability and carbon resistance, thereby exhibiting better catalytic activity and stability in DRM evaluation. The deactivation of all catalysts during the reforming reaction was mainly ascribed to the sintering as well as encapsulation of Ni nanoparticles by graphitic carbon.

» Author: Bin Li, Xiaoqing Yuan, Baitao Li, Xiujun Wang
» Publication Date: 01/06/2020
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
