AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea: A comparative study of China and South Korea
Soils in coastal areas of the land-sea interface are vulnerable to heavy metal (HM) accumulation and subsequently to human health risk. However, few studies have investigated the HM pollution and risk in soils along the coastal areas of the Yellow Sea Large Marine Ecosystem (YSLME), in an international perspective. This study is the first comprehensive work in the YSLME encompassing 122 coastal locations along the Bohai Sea (BS), Yellow Sea of China (YSC), and Yellow Sea of South Korea (YSK). Soil HM pollution showed great spatial variations cross the regions and countries. Accumulations of As, Cu, Pb, and Zn in the YSK were significantly higher than those in the BS and YSC (p?<?0.05). Whilst the elevated Cd, Hg, and Ni in soils were found in the BS and YSC compared to those in the YSK (p?<?0.05). Meantime, the assessment of ecological risk posed by HMs indicated higher potential risk in the BS than other coastal areas. In specific, Cd and Hg posed a higher risk in the BS and YSC, while As showed relatively high risk in the YSK, indicating site-dependent accumulation of HMs in soils. Soil pH and organic matter were found to be important factors affecting the HM accumulation in the study areas. Industrial activities are the major driving factors influencing spatial distributions of HMs, and such activities exhibited different degrees of influence across the sampling sites. Altogether, the results of present study first identified the bilateral characteristics of soil HM pollution along the entire coasts of the YSLME in a comprehensive manner in several aspects: (1) sources, (2) hot spots, (3) priority chemicals of concern, and (4) site-specific potential risk of the soil HMs. Overall, this study provides references and backgrounds for future environmental management strategies and aids in developing a bilateral government policy towards coastal pollution management of HMs from an international scale and perspective.
Graphical abstract» Author: Peng Liu, Wenyou Hu, Kang Tian, Biao Huang, Yongcun Zhao, Xinkai Wang, Yunqiao Zhou, Bin Shi, Bong-Oh Kwon, Kyungsik Choi, Jongseong Ryu, Yong Chen, Tieyu Wang, Jong Seong Khim
» Publication Date: 01/04/2020
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es