AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
How microplastics affect chiral illicit drug methamphetamine in aquatic food chain? From green alga (Chlorella pyrenoidosa) to freshwater snail (Cipangopaludian cathayensis)
The biological impacts of microplastics on many organisms have been well documented. However, the combined effects of microplastics and chiral chemicals on the aquatic food chain are less clear. In the present study, the enantioselective environmental behaviors of methamphetamine co-exposed with microplastics through an aquatic food chain (from Chlorella pyrenoidosa to Cipangopaludian cathayensis) have been investigated in a laboratory environment. It was found that the acute toxicity of methamphetamine against these two species was significantly increased in the presence of microplastics: Chlorella pyrenoidosa showed an EC50 shift from 0.77 to 0.32?mg L?1, while cipangopaludian cathayensis showed an LC50 shift from 4.15 to 1.48?mg L?1, upon the addition of microplastics as a co-contaminant with methamphetamine. Upon exposure to methamphetamine and microplastics, the oxidative damage of algae (19.9 to 36.8?nmol mgprot?1), apoptosis (increase about 2.17 times) and filtration rate (41.2 to 65.4?mL?h?1) of snails were observably higher when compared to exposure to methamphetamine alone. After ingestion and accumulation of microplastics, the enantioselectivity, BCFs, BMFs, and distribution of methamphetamine were significantly altered. These results provide evidence that the co-occurrence of microplastics and the chiral drug methamphetamine may increase the burden on aquatic species, with potential further impacts throughout aquatic food chain.
Graphical abstract» Author: Han Qu, Ruixue Ma, Holly Barrett, Bin Wang, Jiajun Han, Fang Wang, Pin Chen, Wei Wang, Guilong Peng, Gang Yu
» Publication Date: 01/03/2020
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es