AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Impact of rapid urbanization on the surface water?s quality: a long-term environmental and physicochemical investigation of Tajan river, Iran (2007?2017)
Sustainable development of our society requires protection and monitoring of aquatic environments, as they are the pivotal water resources and niche for wildlife animals. In this research, physicochemical parameters of Tajan river?s water were determined and compared with standards to assess the rural and human activity impact on water quality. First, monitoring and analyzing the water quality of the river were performed for 11?years (from 2007 to 2017). Based on calculated water quality index (WQI) values, Tajan river?s water quality falls into four categories: good water with WQI less than 30 at upstream and middle of the river, poor water, and very poor to even unsuitable water (WQI ranges from 86 to 134) at the more urbanized locations. The high values of WQI are due to an elevated concentration of sulfate, nitrate, total dissolved solids (TDS), and chloride substances. The source of contaminations, according to the geochemistry of the area and having more than 90% growth rate in the population near to the most polluted location, is probably anthropogenic activities. Then, the long-term experimental data set has been utilized for developing a statistical model to be used for prediction of water quality with a few chemical analyses, generating a rapid and low-cost water quality evaluation for this river. The model was developed based on the stepwise multiple linear regression (MLR) approach and confirmed the experimental observation data of the most defective elements on WQI were respectively SO4, NO3, TDS, Cl, pH, and EC. This study presents a long-term evaluation of changes in surface water quality at a region with a recent rapid urban and civil development providing a suitable case to understand better human?water relations.
» Publication Date: 04/01/2020
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es