
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Deciphering the particle specific effects on metabolism in rat liver and plasma from ZnO nanoparticles versus ionic Zn exposure
Toxicity of ZnO nanoparticles (NPs) are often related to the release of Zn2+ ions due to their dissolution. Studies also suggest that the toxicity of ZnO NPs cannot be solely explained by the release of Zn2+ ions; however, there is a lack of direct evidence of ZnO particulate effects. This study compared the acute toxicity of ZnO NPs and ZnSO4 following intranasal exposure using a combination of metallomics and metabolomics approaches. Significant accumulation of Zn in the liver was only found in the ZnO NP treatment, with 29% of the newly accumulated Zn in the form of ZnO as revealed by X-ray fine structure spectroscopy (XAFS). This is the first direct evidence suggesting the persistence of ZnO NPs in liver upon intranasal exposure. Although both ZnO NPs and ZnSO4 altered the metabolite profiles, with some overlaps and considerable specificity, of both liver and plasma samples, more and distinct metabolites in the liver and opposite effects in the plasma were altered by ZnO NPs compared with ZnSO4, consistent with no accumulation of Zn detected in liver from ZnSO4. Specifically, a large number of antioxidant-related compounds and energetic substrates were exclusively elevated in the liver of ZnO NP-treated animals. These findings provided direct evidence that persistence of ZnO NPs induced particle-specific effects on the antioxidant systems and energy metabolism pathways.
Graphical abstract
» Author: Zhiling Guo, Yali Luo, Peng Zhang, Andrew J. Chetwynd, Heidi Qunhui Xie, Fazel Abdolahpur Monikh, Wunqun Tao, Changjian Xie, Yiyun Liu, Li Xu, Zhiyong Zhang, Eugenia Valsami-Jones, Iseult Lynch, Bin Zhao
» Publication Date: 01/03/2020
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
