
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Palladium/iron nanoparticles stimulate tetrabromobisphenol a microbial reductive debromination and further mineralization in sediment
Tetrabromobisphenol A (TBBPA) has aroused serious pollution in surface sediment. To date, whether and how iron-based nanoparticles could stimulate TBBPA in situ anaerobic biodegradation in sediment remains poorly understood. In this study, the distinctly enhanced TBBPA degradation activity with the rate constant k improved 4.7 times by fed with Pd/Fe nanoparticles (0.412?g L?1 dosage, 0.5?wt% Pd loading) was observed. TBBPA degradation first went through reductive dehalogenation with bisphenol A (BPA) as the metabolites, and after the addition of Pd/Fe nanoparticles, BPA was further degraded to 4-(allene)phenol and 2,2-bis(4-hydroxyphenyl) propanoic acid via UPLC-QTOF-MS analysis, suggesting the complete detoxification potential. By the addition of Pd/Fe nanoparticles, the large amount of H2 production (560 times higher) and the significant inhibition of methane generation facilitated the metabolism of potential reductive dehalogenators (Desulfovibrio, Clostridium, etc.), demonstrated by their increased ecological abundance and the tighter cooperative interrelations between each other. Meanwhile, the addition of Pd/Fe nanoparticles largely promoted the ecological abundance of Fe(III) reducing and aromatics degrading bacteria (Bacillus, Cryptanaerobacter, etc.), resulting in BPA further degradation. The bacterial ecological network further revealed that the potential BPA degrading bacteria shared the more positive interactions with the potential dehalogenators in the presence of Pd/Fe nanoparticles. The study firstly revealed the addition of Pd/Fe nanoparticles obviously enhanced the respiratory metabolic activities and cooperative interrelations of reductive dehalogenators and BPA degraders, which gives suggestions for in situ remediation and detoxification of BFRs in contaminated sediment.
Graphical abstract
» Author: Xiao-Qiu Lin, Zhi-Ling Li, Ying-Ying Zhu, Fan Chen, Bin Liang, Jun Nan, Ai-Jie Wang
» Publication Date: 01/02/2020
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
