In this section, you can access to the latest technical information related to the FUTURE project topic.

Cellulose nanofibril-polymer hybrids for protecting drilling fluid at high salinity and high temperature

A copolymer (PADH) was first synthesized from 2-acrylamido-2-methylpropane sulfonic acid (AMPS), N,N-dimethylacrylamide (DMA), and 2-Hydroxyethyl acrylate (HEA) by UV-induced polymerization. Subsequently, cellulose nanofibrils (CNFs) were introduced into the copolymer through ironic cross-linking between ferric ions and carboxylate groups as well as sulfonic acid groups to produce a hybrid product (PADHC-Fe3+-3). The salt tolerance and thermal stability of the copolymers and the hybrid product were investigated. The results showed that the optimum HEA dosage was 5% (in relation to the total mass of AMPS and DMA). In addition, the fluid loss test showed that the hybrid product PADHC-Fe3+-3 had excellent salt tolerance (maximum tolerance: 26.5 wt% NaCl and 32 wt% combined salts) and thermal stability (maximum tolerance: 200 ?C). The SEM images indicated that the filter cakes became denser after the addition of PADHC-Fe3+-3. The results demonstrated that the cross-linked hybrid product was very promising for industrial application in drilling engineering.

» Author: Xiongli Liu, Zhaoyang Yuan, An Wang, Chunping Wang, Jialei Qu, Bin Chen, Bing Wei, Nuwan Sella Kapu, Yangbing Wen

» Reference: 10.1016/j.carbpol.2019.115465

» Publication Date: 01/02/2020

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es