AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Characteristics, evolution, and regional differences of biomass burning particles in the Sichuan Basin, China
The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin.
» Author: Jinqi Luo, Junke Zhang, Xiaojuan Huang, Qin Liu, Bin Luo, Wei Zhang, Zhihan Rao, Yangchun Yu
» Publication Date: 01/03/2020
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es