
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Multi-role p-styrene sulfonate assisted electrochemical preparation of functionalized graphene nanosheets for improving fire safety and mechanical property of polystyrene composites
Polystyrene sulfonate functionalized graphene nanosheets (PSS@GNS) with high quality (ID/IG?=?0.17) were fabricated through electrochemical exfoliation of bulk graphite followed by simple free radical polymerization in water solution, which is a promising strategy for mass production of polymer functionalized graphene. P-styrene sulfonate anions were used to intercalate into the bulk graphite under voltage and also as monomers of the macromolecule modification agents for the exfoliated graphene nanosheets. Besides, benzene rings and carbon double bonds are considered to be able to capture hydroxyl free radicals which produce defects on graphene sheets during electrochemical exfoliation process, thus improve the quality of the exfoliated graphene nanosheets. Then the graphene nanosheets were incorporated into polystyrene (PS) through a solution blending method to reduce the fire hazards and improve mechanical properties of PS resin. According to the results of cone calorimeter, the introduction of functionalized graphene nanosheets into PS reduces heat release rate (decreased by 40%), total heat release (decreased by 35%) and increases the amount of char residues. The flame retardant improvement is attributed to the barrier effect of well-dispersed graphene nanosheets, limiting the mass transfer of the volatile compounds and forming char layers which blocked polymers from heat and oxygen. Meanwhile, the introduction of PSS@GNS into PS also contributed to increase its strength and elongation rate thanks to the pristine properties of graphene nanosheets and their interfacial interaction with the PS matrix.

» Author: Zhixin Zhao, Wei Cai, Zhoumei Xu, Xiaowei Mu, Xiyun Ren, Bin Zou, Zhou Gui, Yuan Hu
» Publication Date: 15/01/2020
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
