AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Construction of ternary Ag@ZnO/TiO2 fibrous membranes with hierarchical nanostructures and mechanical flexibility for water purification
Rational design of semiconductor membrane photocatalyst with good mechanical flexibility and excellent photocatalytic activity is of significance for environmental remediation. Herein, flexible Ag@ZnO/TiO2 fibrous membranes with hierarchical nanostructures were fabricated through combining a simple electrospinning method and subsequent hydrothermal reaction and photodeposition process. In the ternary nanocomposite, ZnO nanorods were firmly anchored onto TiO2 nanofibers, while Ag nanoparticles were evenly decorated on the surface of both ZnO and TiO2. Benefiting from the improved light absorption, large surface area, and effective charge separation, the resultant Ag@ZnO/TiO2 membranes displayed superior photocatalytic degradation efficiency of 91.6% toward tetracycline hydrochloride within 1?h, and also exhibited prominent antibacterial activity with a 6.5 log inactivation of E. coli after 1?h simulated solar light exposure. Significantly, the membrane photocatalyst still preserved structural integrity and mechanical flexibility after utilization. This study provides an alternative approach for designing and synthesizing flexible TiO2-based membrane photocatalysts toward high-efficiency water purification.
» Author: Jun Song, Gang Sun, Jianyong Yu, Yang Si, Bin Ding
» Publication Date: 01/01/2020
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es