AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Reexamination of the microphase separation in MDI and PTMG based polyurethane: Fast and continuous association/dissociation processes of hydrogen bonding
Microphase separation and hard segment packing in polyurethanes remain areas of active research interest in order to optimize their performances. In this work, a commercial thermoplastic polyetherurethane (1180A, BASF) is used as a model system to investigate the packing of hard segments during microphase separation. Although DSC studies show several transitions during heating and cooling, no crystal structure is detected by XRD. Nevertheless, these endothermic and exothermic peaks should belong to the complicate hard/soft segment interaction and related structures. Time and temperature dependent FTIR spectra prove fast hydrogen bonding association/dissociation phenomena in the current system. We infer that such fast process can induce loosely or irregular packing of hard segments during cooling. On the other hand, the continuous change of degree of microphase separation with temperature implies different hard domain structures and stabilities at different temperatures. At high temperature, only hard domains with large size and compactly packed segments can survive. This is because the thermodynamic stability of hard domains is decided by the strength of hydrogen bonding and the size of hard domain, similar with classical description of ?nucleation?. Morphological information obtained by fitting the SAXS curves proves the validity of the above model. Moreover, the significant difference in mechanical properties before and after thermal treatment can be explained by the microstructure model.
» Author: Zhengyang Kong, Qiang Tian, Ruoyu Zhang, Jingbo Yin, Lei Shi, Wu Bin Ying, Han Hu, Chenkai Yao, Kai Wang, Jin Zhu
» Publication Date: 17/12/2019
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es