AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Enhanced surface layers by laser cladding and ion sulfurization processing towards improved wear-resistance and self-lubrication performances
Enhanced surface layers with improved wear-resistance and self-lubrication performances were prepared by means of laser cladding and ion sulfurization processing. The microstructure, element distribution, phase composition, valence states, microhardness and wear resistance of the composited layers were investigated. The results show that Ni-based cladding coating is composed of ?-(Fe, Ni), Cr2C3, M23C6, M3C type carbides as well as a large number of dislocations and stacking fault in the austenite grains. FeS forms form on the surface of cladding Ni-based coating by ion sulfurizing treatment. Microhardness of Ni-based cladding coating reaches to 600HV0.1 resulting from the combined effects of ultrafine dendrites and solid solution strengthening and dislocations strengthening, whereas microhardness of the composite layer decrease slightly near the surface (about 470HV0.1). Due to the existance of FeS film both the wear mass loss and friction coefficient of the composite layers decrease dramaticlly. Moreover, there is a slight scratch on the worn surface of laser cladding-ion sulfurizing composite layer, while worn mechanism of medium carbon steel is serious abrasion along with long and deep grooves and fatigue wear occurs on the surface of Ni-based cladding coating.
» Author: Meiyan Li, Bin Han, Lixin Song, Qingkun He
» Reference: 10.1016/j.apsusc.2019.144226
» Publication Date: 15/02/2020
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es