In this section, you can access to the latest technical information related to the FUTURE project topic.

The influence that different urban development models has on PM2.5 elemental and bioaccessible profiles

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Help us improve our products. Sign up to take part.

  1. nature
  2. scientific reports
  3. articles
  4. article

A Nature Research Journal

Menu Search E-alert Submit My Account Login The influence that different urban development models has on PM2.5 elemental and bioaccessible profiles

volume?9, Article?number:?14846 (2019) | Download Citation

Article metrics Subjects Abstract

Limited studies have reported on in-vitro analysis of PM2.5 but as far as the authors are aware, bioaccessibility of PM2.5 in artificial lysosomal fluid (ALF) has not been linked to urban development models before. The Brazilian cities Manaus (Amazon) and Curitiba (South region) have different geographical locations, climates, and urban development strategies. Manaus drives its industrialization using the free trade zone policy and Curitiba adopted a services centered economy driven by sustainability. Therefore, these two cities were used to illustrate the influence that these different models have on PM2.5 in vitro profile. We compared PM2.5 mass concentrations and the average total elemental and bioaccessible profiles for Cu, Cr, Mn, and Pb. The total average elemental concentrations followed Mn?>?Pb?>?Cu?>?Cr in Manaus and Pb?>?Mn?>?Cu?>?Cr in Curitiba. Mn had the lowest solubility while Cu showed the highest bioaccessibility (100%) and was significantly higher in Curitiba than Manaus. Cr and Pb had higher bioaccessibility in Manaus than Curitiba. Despite similar mass concentrations, the public health risk in Manaus was higher than in Curitiba indicating that the free trade zone had a profound effect on the emission levels and sources of airborne PM. These findings illustrate the importance of adopting sustainable air quality strategies in urban planning.

» Author: Gabriela Polezer

» Reference: doi:10.1038/s41598-019-51340-4

» Publication Date: 16/10/2019

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es