In this section, you can access to the latest technical information related to the FUTURE project topic.

Chemical and Physical Aspects of Self-Healing Materials

Publication date: Available online 22 June 2015
Source:Progress in Polymer Science

Author(s): Ying Yang , Xiaochu Ding , Marek W. Urban

The concept of self-healing synthetic materials emerged a couple of decades ago and continues to attract scientific community. Driven primarily by an opportunity to develop life-like materials on one hand, and sustainable technologies on the other, several successful approaches to repair mechanically damaged materials have been explored. This review examines chemical and physical processes occurring during self-healing of polymers as well as examines the role of interfaces in rigid nano-objects in multi-component composites. The complex nature of processes involved in self-healing demands understanding of multi-level molecular and macroscopic events. Two aspects of self-healing are particularly intriguing: physical flow (macro) of matter at or near a wound and chemical re-bonding (molecular)of cleaved bonds. These events usually occur concurrently, and depending upon interplay between kinetics and thermodynamics of the processes involved, these transient relations as well as efficiency are critical in designing self-healing materials. This review examines covalent bonding and supramolecular chemistry in the context of molecular heterogeneities in repair processes. Interfacial regions in nanocomposites also facilitate an opportunity for supramolecular assemblies or covalent bonding which, if designed properly, are capable of self-repairs.





» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es