In this section, you can access to the latest technical information related to the FUTURE project topic.

Degradation of diiodoacetamide in water by UV/chlorination: Kinetics, efficiency, influence factors and toxicity evaluation

The formation and control of haloacetamides (HAcAms) in drinking water have raised high attention due to their high genotoxicity and cytotoxicity, especially the most cytotoxic one, diiodoacetamide (DIAcAm). In this study, the degradation of DIAcAm by UV/chlorination was investigated in terms of degradation kinetics, efficiency, influencing factors, oxidation products and toxicity evaluation. Results revealed that the degradation of DIAcAm by UV/chlorine process followed pseudo-first-order kinetics, and the rate constant between DIAcAm and OH radicals was determined as 2.8???109?M?1?s?1. The contribution of Cl to DIAcAm degradation by UV/chlorine oxidation was negligible. Increasing chlorine dosage and decreasing pH significantly promoted the DIAcAm degradation during UV/chlorine oxidation, but the presence of bicarbonate (HCO3?) and natural organic matter (NOM) inhibited it. The mass balance analysis of iodine species was also evaluated during UV/chlorine oxidation of DIAcAm. In this process, with DIAcAm decreasing from 16.0 to 0.8??M-I in 20?min, IO3?, I? and HOI/I2 increased from 0 to 6.3, 6.1 and 0.5??M-I, respectively. The increase of CHO cell viability during DIAcAm degradation indicated that the toxicity of DIAcAm could be decreased by chlorination, UV irradiation and UV/chlorine oxidation treatments, in which UV/chlorine oxidation was more effective on toxicity reduction than chlorination and UV irradiation alone.

» Author: Zhi Liu, Yi-Li Lin, Bin Xu, Chen-Yan Hu, Tian-Yang Zhang, Tong-Cheng Cao, Yang Pan, Nai-Yun Gao

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es