AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Fabrication of functionalized nanosilicone particles-doped biodegradable eco-friendly proton exchange membranes
The functionalized nanosilicone particles with high sulfonic and carboxyl groups were prepared and incorporated into chitosan matrix to fabricate the doped biodegradable eco-friendly electrolyte materials. The functionalized nanosilicone particles not only were as crosslinkers and proton conductors, but also could form the compact silicone network. Compared with the undoped membrane, the doped ones showed better water retention, methanol barrier, thermal and mechanical stability. In particular, lower methanol uptake and diffusion in higher methanol concentration were very advantageous for reducing fuel wastage and increasing cell efficiency. The lowest methanol diffusion coefficient obtained in 12?M methanol (5.60???10?8?cm2?s?1) was less than 1/56 of that of Nafion? 117. In addition, proton conductivity of the doped membranes was significantly affected by nanosilicone particles content. The highest conductivity value obtained with 30% nanosilicone particles was 0.074?S?cm?1 at 80??C, which was very close to the value of Nafion? 117 at same conditions. The decreased methanol diffusion and improved conductivity conferred the super selectivity. In our work, the maximum selectivity was 5.30???105?Ss?cm?3 which was approximately 33.5 times of that of Nafion? 117, indicating that the doped membranes were promising candidates for proton exchange membrane applications. Furthermore, the addition of functionalized nanosilicone particles endowed the membranes with many other advantages, including cost-effectiveness and simple preparation, which also improved the application potential of natural polymer chitosan as direct methanol fuel cell membrane material.
» Author: Bin?WangJingran?ShangYe?ZhaoShuangling?ZhongXuejun?Cui
» Reference: Journal of Materials ScienceDecember 2019, Volume 54, Issue?23, pp 14504?14514 | Cite as
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es