
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Effect of steel and polypropylene fibers on the quasi-static and dynamic splitting tensile properties of high-strength concrete
The influence of steel-polypropylene hybrid fibers on the tensile properties of high-strength concrete is investigated by quasi-static and dynamic Brazilian disc splitting tests. The failure modes of fiber reinforced concrete specimens and the influence of different fiber mixing ratios on the splitting tensile strength of the specimens are analyzed. The research results indicate that the plain concrete and single-doped polypropylene fiber concrete specimens show straight cracks along the loading line during the experimental process, showing the brittle failure characteristics; while the single-doped steel fiber concrete and hybrid fiber concrete specimens show more bifurcated micro-cracks along the loading line, showing the ductile failure characteristics. The splitting tensile strength of concrete specimens increases with the increase of steel fiber content, and increases first and then decreases with the increase of polypropylene fiber content. The mixed use of steel fiber and polypropylene fiber not only improves the splitting tensile strength of concrete specimens, but also reduces the risk of brittle failure of concrete. Especially when the steel fiber content is S2 (2.5%), the hybrid of steel-polypropylene fibers has a great improvement effect on the splitting properties of concrete specimen. In addition, it is found that the splitting tensile strength of fiber reinforced concrete specimens increases with the increase of force loading rate, showing the enhancing effect of loading rate. Comparing the rate-enhancing effect of specimens with different fiber content, it is found that the change of fiber content has a certain influence on the loading rate-enhancing effect of specimens.

» Author: Hui Guo, Junlin Tao, Yu Chen, Dan Li, Bin Jia, Yue Zhai
» Publication Date: 10/11/2019
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
