AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
A review of deep learning for renewable energy forecasting
As renewable energy becomes increasingly popular in the global electric energy grid, improving the accuracy of renewable energy forecasting is critical to power system planning, management, and operations. However, this is a challenging task due to the intermittent and chaotic nature of renewable energy data. To date, various methods have been developed, including physical models, statistical methods, artificial intelligence techniques, and their hybrids to improve the forecasting accuracy of renewable energy. Among them, deep learning, as a promising type of machine learning capable for discovering the inherent nonlinear features and high-level invariant structures in data, has been frequently reported in the literature. This paper provides a comprehensive and extensive review of renewable energy forecasting methods based on deep learning to explore its effectiveness, efficiency and application potential. We divide the existing deterministic and probabilistic forecasting methods based on deep learning into four groups, namely deep belief network, stack auto-encoder, deep recurrent neural network and others. We also dissect the feasible data preprocessing techniques and error post-correction methods to improve the forecasting accuracy. Extensive analysis and discussion of various deep learning based forecasting methods are given. Finally, we explore the current research activities, challenges and potential future research directions in this topic.
» Author: Huaizhi Wang, Zhenxing Lei, Xian Zhang, Bin Zhou, Jianchun Peng
» Publication Date: 15/10/2019
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es