
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Surface-coating engineering for flame retardant flexible polyurethane foams: A critical review
Flexible polyurethane foams (FPUFs) have been extensively used in furniture, carpet, automobiles, etc., due to their superior thermal insulation, low bulk density and superior chemical resistant properties. Unfortunately, they are extremely ignitable and flammable, and release a large amount of combustion heat accompanied by plenty of smoke and toxic gases upon ignited, thus posing a potential threat to lives and property. The minimization of their fire hazards is usually realized by the addition of flame retardants, and the creation of flame retardant coating. As compared with the former approach, the surface coating strategy has gained much more interests because it improves the flame retardancy of FPUFs without compromising mechanical properties. To date, several surface-coating approaches, including in situ deposition, sol-gel process, plasma technique and layer-by-layer (LBL) assembly have been developed for improving the fire safety performance of FPUFs. This review focuses on the recent advances in flame retarded FPUFs by employing the surface coating approaches. This work also summarizes the design of intumescent and non-intumesecent fire retardant coatings applied to the fire protection of FPUFs by depositing (nano)coatings on their surfaces. Special attention will be paid to the FPUFs treated with flame retardant nanocoating via the LBL assembly. Moreover, this work further compares the advantages and disadvantages of these surface coating methods, and finally presents some future research opportunities on flame retardant FPUFs materials.

» Author: Haitang Yang, Bin Yu, Pingan Song, Cristian Maluk, Hao Wang
» Publication Date: 01/11/2019
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
