
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Multi-objective optimization scheduling of wind–photovoltaic–hydropower systems considering riverine ecosystem
Hydropower can aid in compensating for wind and photovoltaic power output fluctuations and uncertainties. In this study, a multi-objective optimization model was established by integrating wind and photovoltaic power with hydropower scheduling considering the total power generation, power output stability, and influence of hydropower on a downstream riverine ecosystem. An improved adaptive reference point-based multi-objective evolutionary algorithm was employed to solve the wind–photovoltaic–hydropower system problem with various complicated constraints. Moreover, the large-scale system decomposition principle was used to decouple a wind–photovoltaic–hydropower system into a wind–photovoltaic compensated subsystem and a hydropower system. A combined solution method was developed according to the subsystem characteristics to improve the model efficiency. Considering that direct crossover and mutation of hydropower systems may not yield feasible solutions, dynamic feasible regions for crossover and mutation were constructed for multi-objective optimal scheduling. Furthermore, a stochastic multi-criteria decision making model that accounts for the uncertainty of criterion information was established, and the non-dominated solution obtained using the improved multi-objective evolutionary algorithm was employed for decision-making. The results showed that the total power generation, power output stability, and downstream riverine ecosystem have strong competitive relationships, and the improved adaptive reference point-based multi-objective evolutionary algorithm can produce superior quality Pareto optimal solutions with uniform distribution. Subsequently, the stochastic multi-criteria decision making model was used to rank the Pareto optimal solutions, where each solution can obtain several ranks with different probabilities, providing extensive information for use in decision-making.

» Author: Weifeng Liu, Feilin Zhu, Juan Chen, Hao Wang, Bin Xu, Peibing Song, Ping-an Zhong, Xiaohui Lei, Chao Wang, Mengjia Yan, Jieyu Li, Minzhi Yang
» Reference: 10.1016/j.enconman.2019.05.104
» Publication Date: 15/09/2019
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
