
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
In situ synthesis of poly (?- glutamic acid)/alginate/AgNP composite microspheres with antibacterial and hemostatic properties
In the present work, a poly(?-glutamic acid)/alginate/silver nanoparticle (PGA/Alg/AgNP) composite microsphere with excellent antibacterial and hemostatic properties was prepared by the in situ UV reduction and emulsion internal gelation method, and its potential application for antibacterial hemostatic dressing was explored. Well dispersed AgNPs were in situ synthesized by a UV reduction method with alginate as stabilizer and reductant. The AgNPs showed excellent antibacterial activities against both gram-negative and gram-positive bacteria. Additionally, the AgNPs prepared by the in-situ UV reduction exhibited better biocompatibility and antibacterial effects than those prepared by the conventional chemical reduction method. PGA/Alg/AgNP composite microspheres were then prepared with the AgNPs by an emulsion internal gelation method. Such microspheres were found to be a porous and hollow network with pH-sensitive swelling properties and excellent hemostatic performance, indicating its application potentials as an advanced antibacterial hemostatic material.

» Author: Zongrui Tong, Jueying Yang, Lizhi Lin, Ruiqi Wang, Bin Cheng, Yu Chen, Liansheng Tang, Jianying Chen, Xilan Ma
» Reference: 10.1016/j.carbpol.2019.05.035
» Publication Date: 30/05/2019
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
