AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Practical strategy to produce ultrafine ceramic glaze: Introducing a polycarboxylate grinding aid to the grinding process
In this work, a polycarboxylate comb-like polymer was used as grinding aid for ceramic slurry, and the effect of addition of this grinding aid on ceramic process property was highlighted. The grinding efficiency of the polycarboxylate grinding aid (PG) in terms of the particle size distribution and specific surface of unit volume of the ceramic slurry being ground were investigated. Consequently, the PG that was synthesized via free radical polymerization under the condition of an APEG/AA/MA molar ratio of 0.3:1:1, an initiator dosage of 5?wt%, and a reaction time of 6?h at 90?°C, provided better grinding efficiency than those of the triethanolamine and other commercial grinding aids. Specifically, with a dosage of 0.21% and 2?h of grinding, the d97 and d50 of ceramic slurry decreased from 13.956??m and 2.043?µm to 3.739?µm and 0.561?µm, respectively. The cumulative distribution, frequency distribution and SEM results exhibited a uniform particle size distribution for ceramic ground with PG-C. Furthermore, the sintering experiment indicated that a lower processing temperature was capable of producing ultrafine ceramic. These improvements indicated the potential application of the PG as an efficiency ceramic grinding aid, which further facilitating the preparation of uniform ultrafine slurry by a sand mill.
» Author: Fei Cheng, Ying Feng, Qinqin Su, Daidong Wei, Bin Wang, Yuewen Huang
» Reference: 10.1016/j.apt.2019.05.014
» Publication Date: 27/05/2019
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es