
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
In situ formation of ultrathin C3N4 layers on metallic WO2 nanorods for efficient hydrogen evolution
The number and conductivity of active sites of electrocatalysts have become the main factors for excellent performances for hydrogen evolution reaction (HER). In this work, in situ formation of ultrathin C3N4 layers coating on the surface of metallic WO2 nanorods (WO2@C3N4) as electrocatalysts for HER has been realized by a facile dopamine (PDA) coating on WO3 nanorods precursor and following calcination process. Firstly, the uniform polydopamine (PDA) layer has been coated on the surface of WO3 nanorods (WO3@PDA) through a hydrogen thermal process. The ultrathin C3N4 layers with large graphitization degree after calcination of WO3@PDA can improve the conductivity and stability of catalysts during HER. The formation of one dimensional WO2 nanorods may expose more active sites for HER. Benefited from the synergistic effect between WO2 and C3N4 layers as well as the protection cap of ultrathin C3N4 layers, the obtained core-shell structured WO2@C3N4 nanorods exhibit excellent HER performances and high durability in acidic solution, which only require an overpotential of 98?mV to generate a current density of 10?mA?cm?2. Therefore, this work provides a new strategy for constructing transition metal oxides electrocatalyst with high activity and stability by introducing ultrathin C3N4 layer coupled with 1D nanostructure.

» Author: Shan-Shan Lu, Li-Ming Zhang, Kai Fan, Jing-Yi Xie, Xiao Shang, Jia-Qi Zhang, Jing-Qi Chi, Xin-Lei Yang, Lei Wang, Yong-Ming Chai, Bin Dong
» Reference: 10.1016/j.apsusc.2019.05.189
» Publication Date: 01/09/2019
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
