AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Nitrogen removal in a combined aerobic granular sludge and solid-phase biological denitrification system: system evaluation and community structure
In the present study, the feasibility of treating high ammonia wastewater was evaluated in a combination of aerobic granular sludge nitrification reactor (AGS-SBR) and poly(butylene succinate) solid denitrification reactor (PBS-SBR). After 90 days operation, the effluent NH4+-N and total nitrogen (TN) removal efficiencies were high of 99.6% and 99.7%, respectively. According to typical cycle, N2O emission rate in AGS nitrification process was much higher than PBS denitrification process. It was found from EEM-PARAFAC that the fluorescence intensity scores (protein-like and humic like substances) of soluble microbial products (SMP) in AGS-SBR were the significant higher than in PBS-SBR. Microbial community analysis showed that Thauera was main genus in AGS-SBR and Hydrogenophaga Simplicispira and Thiomonas were dominant genus in PBS-SBR. The obtained result implied that the combined technology is feasible to remove nitrogen compounds from wastewater to meet the stringent emission standards.
» Author: Yingrui Liu, Dong Wei, Weiying Xu, Rui Feng, Bin Du, Qin Wei
» Reference: 10.1016/j.biortech.2019.121504
» Publication Date: 18/05/2019
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es