AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Binder-free carbon-coated TiO2@graphene electrode by using copper foam as current collector as a high-performance anode for lithium ion batteries
Anatase TiO2 is widely used in lithium ion batteries (LIBs) due to its excellent safety and excellent structural stability. However, due to the poor ion and electron transport and low specific capacity (335 mAh g?1) of TiO2, its application in LIBs is severely limited. For the first time, we report a binder-free, carbon-coated TiO2@graphene hybrid by using copper foam as current collector (TG-CM) to enhance the ionic and electronic conductivity and increase the discharge specific capacity of the electrode material without adding conductive carbon (such as super P, etc.) and a binder (such as polyvinylidene fluoride (PVDF), etc.). When serving as an anode material for LIBs, TG-CM displays excellent electrochemical performance in the voltage range of 0.01–3.0?V. Moreover, the TG-CM hybrid delivers a high reversible discharge capacity of 687.8 mAh g?1 at 0.15?A?g?1. The excellent electrochemical performance of the TG-CM hybrid is attributed to the increased lithium ion diffusion rate due to the introduction of graphene and amorphous carbon layer, and the increased contact area between the active material and electrolyte, and small resistance with copper foam as the current collector without an additional binder (PVDF) and conductivity carbon (super P).
» Author: Chang-sheng An, Bao Zhang, Lin-bo Tang, Bin Xiao, Zhen-jiang He, Jun-chao Zheng
» Reference: 10.1016/j.ceramint.2019.03.249
» Publication Date: 01/07/2019
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es