AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Modelling induced bank filtration effects on freshwater ecosystems to ensure sustainable drinking water production
Induced bank filtration (IBF) is a water abstraction technology using different natural infiltration systems for groundwater recharge, such as river banks and lake shores. It is a cost-effective pre-treatment method for drinking water production used in many regions worldwide, predominantly in urban areas. Until now, research concerning IBF has almost exclusively focussed on the purification efficiency and infiltration capacity. Consequently, knowledge about the effects on source water bodies is lacking. Yet, IBF interrupts groundwater seepage and affects processes in the sediment potentially resulting in adverse effects on lake or river water quality. Securing sufficient source water quality, however, is important for a sustainable drinking water production by IBF.
In this study, we analysed the effects of five predicted mechanisms of IBF on shallow lake ecosystems using the dynamic model PCLake: declining CO2 and nutrient availability, as well as increasing summer water temperatures, sedimentation rates and oxygen penetration into sediments. Shallow lake ecosystems are abundant worldwide and characterised by the occurrence of alternative stable states with either clear water and macrophyte dominance or turbid, phytoplankton-dominated conditions. Our results show that IBF in most scenarios increased phytoplankton abundance and thus had adverse effects on shallow lake water quality. Threshold levels for critical nutrient loading inducing regime shifts from clear to turbid conditions were up to 80% lower with IBF indicating a decreased resilience to eutrophication. The effects were strongest when IBF interrupted the seepage of CO2 rich groundwater resulting in lower macrophyte growth. IBF could also enhance water quality, but only when interrupting the seepage of groundwater with high nutrient concentrations. Higher summer water temperatures increased the share of cyanobacteria in the phytoplankton community and thus the risk of toxin production. In relative terms, the effects of changing sedimentation rates and oxygen penetration were small. Lake depth and size influenced the effect of IBF on critical nutrient loads, which was strongest in shallower and smaller lakes. Our model results stress the need of a more comprehensive ecosystem perspective including an assessment of IBF effects on threshold levels for regime shifts to prevent high phytoplankton abundance in the source water body and secure a sustainable drinking water supply.
Graphical abstract» Author: Mikael Gillefalk, Wolf M. Mooij, Sven Teurlincx, Annette B.G. Janssen, Jan H. Janse, Manqi Chang, Jan Köhler, Sabine Hilt
» Publication Date: 15/06/2019
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es