In this section, you can access to the latest technical information related to the FUTURE project topic.

Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene Oxide/Poly(Lactic acid) nanocomposites

Simultaneous flame retardancy and tensile strength enhancement of poly(lactic acid) (PLA) is particularly important due to its eco-friendliness and potential application as an engineering plastic. This work investigates the application of azo-boron (AZOB) modified reduced graphene oxide (RGO) intercalated by sodium metaborate (SMB) for simultaneous flame retardant (FR), smoke/toxic fumes suppression and tensile strength enhancement of PLA nanocomposites. The RGO-AZOB/SMB hybrid was prepared by aryl grafting of AZOB on GO followed by in-situ reduction/intercalation with sodium borohydride/SMB. Then RGO-AZOB/SMB hybrid was incorporated into PLA, and the properties were examined. Cone calorimeter test demonstrates improved FR performance by substantial reductions in peak heat release rate ?76.5%, total heat release ?76.9%, total smoke release ?55.6%, peak CO production ?25.9% and peak CO2 production by ?78.6%. A V-0 rating was attained in the UL 94 test with a higher LOI value of 31.2%. Considerable reductions in pyrolysis products, mainly hydrocarbons, CO, CO2, and carbonyl compounds were observed. The tensile strength and Young's Modulus were improved by 49.1% and 34.9% respectively. The FR mechanism of RGO-AZOB/SMB/PLA nanocomposites is based primarily on the glassy charring effect of the B–OH groups in AZOB and the inherent lamellar blocking effect of RGO.

» Author: Benjamin Tawiah, Bin Yu, Richard K.K. Yuen, Ruichao Wei, John H. Xin, Bin Fei

» Reference: 10.1016/j.carbon.2019.05.002

» Publication Date: 04/05/2019

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es