AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Highly active metallic nickel sites confined in N-doped carbon nanotubes toward significantly enhanced activity of CO2 electroreduction
Carbon dioxide electroreduction (CO2ER) still faces the challenges of low product selectivity, high overpotential, and high cost of electrocatalysts. Herein, we develop a low-cost and highly efficient precious-metal-free CO2ER electrocatalyst, composed of Ni nanoparticles (NPs) with the size range of 50–100?nm, confined within N-doped carbon nanotubes (NCNTs) with the diameter of 100–200?nm (Ni@NCNTs). Benefitting from the confinement effect, the resulting 1D Ni@NCNTs hybrid exhibits an exceptional electrocatalytic activity and selectivity for CO production with a relatively positive onset potential of ?0.3?V, low Tafel slope of 97?mV dec?1, and high Faradaic efficiency of 99.1%. The high selectivity of Ni@NCNTs for CO production during the CO2ER is almost the best among all previously reported N-doped carbon based CO2ER electrocatalysts. Experimental observations demonstrate that the confined Ni NPs inside NCNTs is a key step to promote the conversion of CO2 to CO. Density functional theory calculations reveal that the confinement effect of NCNTs can weaken the binding strengths between Ni NPs and *CO intermediates, thus improving the rate-limiting step of *CO desorption during the CO2ER process. Further integration of 1D Ni@NCNTs electrocatalyst with a solar panel or two alkaline batteries enable highly active and sustainable CO2ER and water splitting.
» Author: Wanzhen Zheng, Chenxi Guo, Jian Yang, Feng He, Bin Yang, Zhongjian Li, Lecheng Lei, Jianping Xiao, Gang Wu, Yang Hou
» Reference: 10.1016/j.carbon.2019.04.112
» Publication Date: 03/05/2019
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es