AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Injectable stem cell-laden supramolecular hydrogels enhance in situ osteochondral regeneration via the sustained co-delivery of hydrophilic and hydrophobic chondrogenic molecules
Hydrogels have been widely used as the carrier material of therapeutic cell and drugs for articular cartilage repair. We previously demonstrated a unique host-guest macromer (HGM) approach to prepare mechanically resilient, self-healing and injectable supramolecular gelatin hydrogels free of chemical crosslinking. In this work, we show that compared with conventional hydrogels our supramolecular gelatin hydrogels mediate more sustained release of small molecular (kartogenin) and proteinaceous (TGF-?1) chondrogenic agents, leading to enhanced chondrogenesis of the encapsulated human bone marrow-derived mesenchymal stem cells (hBMSCs) in vitro and in vivo. More importantly, the supramolecular nature of our hydrogels allows injection of the pre-fabricated hydrogels containing the encapsulated hBMSCs and chondrogenic agents, and our data show that the injection process has little negative impact on the viability and chondrogenesis of the encapsulated cells and subsequent neocartilage development. Furthermore, the stem cell-laden supramolecular hydrogels administered via injection through a needle effectively promote the regeneration of both hyaline cartilage and subchondral bone in the rat osteochondral defect model. These results demonstrate that our supramolecular HGM hydrogels are promising delivery biomaterials of therapeutic agents and cells for cartilage repair via minimally invasive procedures. This unique capability of injecting cell-laden hydrogels to target sites will greatly facilitate stem cell therapies.
» Author: Jianbin Xu, Qian Feng, Sien Lin, Weihao Yuan, Rui Li, Jinming Li, Kongchang Wei, Xiaoyu Chen, Kunyu Zhang, Yanhua Yang, Tianyi Wu, Bin Wang, Meiling Zhu, Rui Guo, Gang Li, Liming Bian
» Reference: 10.1016/j.biomaterials.2019.04.031
» Publication Date: 28/04/2019
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es