AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Economical and facile synthesis of a highly efficient flame retardant for simultaneous improvement of fire retardancy, smoke suppression and moisture resistance of epoxy resins
An economical flame retardant additive dimelamine pyrophosphate (DMPY) was synthesized from melamine and sodium pyrophosphate and its chemical structure was well characterized and confirmed. It was used to flame retardant epoxy resin (EP) thermosets and the fire retarded performance, mechanical properties, moisture resistance and flame retardant mechanism of EP thermosets were investigated in details. The samples achieved UL-94 V-0 grade during vertical burning tests and the limiting oxygen index value reached 28.7% when 9?wt% DMPY was incorporated. DMPY stimulated the degradation of EP matrix in advance and the formation of intumescent and compact char layer during combustion. Besides, the nonflammable gases generated from the decomposition of DMPY exerted flame retarded effect in gas phase. Thus, the rate and total amount of heat release and smoke production were significantly suppressed. The moisture resistance of EP/DMPY thermosets was improved comparing with that of pure EP. The samples remained superior flame retardant performance and mechanical properties after water resistance tests due to the excellent water resistance of DMPY. In summary, the EP/DMPY thermosets exhibited excellent flame retardancy, moisture resistance, mechanical properties and fire safety performance. The presented investigation provided a broad application prospect in the high-performance field of flame retardant EP thermosets because of the low cost and easy industrialization of DMPY.
» Author: Lubin Liu, Yue Xu, Miaojun Xu, Zhiqi Li, Yumeng Hu, Bin Li
» Reference: 10.1016/j.compositesb.2019.03.017
» Publication Date: 14/03/2019
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es