
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Hypoglycemic activity and gut microbiota regulation of a novel polysaccharide from Grifola frondosa in type 2 diabetic mice
GFP-N, a novel heteropolysaccharide with a molecular weight of 1.26?×?107?Da, was isolated from maitake mushroom and purified by anion-exchange chromatography on a DEAE cellulose-52 column and gel-filtration chromatography on a Sephadex G-100 column. Its structure was characterized by Fourier transform infrared spectroscopy and one-dimensional (1H- and 13C-) NMR spectra, 1H-1H correlation spectroscopy, and 1H-13C heteronuclear single-quantum coherence spectroscopy. The structure of GFP-N consisted of L-arabinose, D-mannose and D-glucose and mainly contained three kinds of linkage type units as ?2,6)-?-D-Manp-(1???4, ?-L-Araf-C1?, and ?3,6)-?-D-Glcp-(1???. GFP-N could activate insulin receptor substrate 1, phosphatidylinositol-3-kinase, and glucose transporter 4 and inhibit c-Jun N-terminal kinase 1/2 for hypoglycemic effects in diabetic mouse livers. This is also the first report of the regulatory efficacy of Grifola frondosa polysaccharide on intestinal microflora in vivo using single-molecule real-time sequencing. These results indicated that polysaccharide from maitake mushroom could be as an enhancer to improve type 2 diabetes and a healthy food option to help regulate gut microbiota in diabetic individuals.

» Author: Yuqing Chen, Dan Liu, Dingyi Wang, Shanshan Lai, Ruting Zhong, Yuanyuan Liu, Chengfeng Yang, Bin Liu, Moklesur Rahman Sarker, Chao Zhao
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
