
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Functional groups influence and mechanism research of UiO-66-type metal-organic frameworks for ketoprofen delivery
UiO-66 metal-organic framework (MOF) was introduced as ketoprofen delivery system for treating osteoarthritis (OA), and two different kinds of NH2 and NO2 functional groups were grafted into the UiO-66 framework to investigate the effect of functional groups on the drug loading level and release rate. Structural characterization of the samples showed that grafting functional groups had no significant effect on the morphological characteristic and crystal structure of UiO-66. All synthesized MOFs carriers had excellent BET, chemical and thermal stability, though the introduction of NH2 and NO2 functional groups were detrimental for these characteristics. Ketoprofen was successfully loaded on the MOFs carriers, and the results of high performance liquid chromatography (HPLC) indicated UiO-66-NH2 had the highest loading amount (38%). The ketoprofen release experiment manifested that UiO-66-NH2 exhibited lowest release rate and partial release of ketoprofen (about 65%) even after 72?h due to the high hydrogen bonds capacity and alkaline characteristic of -NH2. Furthermore, chondrocyte cytotoxicity experiment manifested that the synthesized MOFs carriers were rather bio-safe, which ensured them to be used as the drug delivery vehicles.

» Author: Zhen Li, Songjian Zhao, Huizhen Wang, Ying Peng, Zhijie Tan, Bin Tang
» Reference: 10.1016/j.colsurfb.2019.02.027
» Publication Date: 01/06/2019
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
