
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Synthesis and formation mechanism of amorphous silica particles via sol–gel process with tetraethylorthosilicate
Silica microspheres with narrow particle size distribution and average diameter of 80–200?nm were prepared by hydrolysis and condensation of tetraethylorthosilicate (TEOS) in ethanol solution. Effects of TEOS, ammonia, water concentration, and temperature on particle size and morphology were investigated by laser particle size analysis and field emission scanning electron microscopy (FESEM), in conjunction with energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) spectroscopy. Monomer addition model was employed to analyze the stability of intermediate, as well as the direction in which the reaction of silica particles proceeds. The analysis was carried out by Materials Studio. Results demonstrated that particle size of Nano-silica increases with increasing concentrations of H2O, NH3·H2O, and TEOS in ethanol, whereas the size decreases with increasing temperature. In addition, when proper amount of H2O was added into NH3·H2O at suitable temperature, silicic acid can act as a nucleus for amorphous Nano-silica particles, forming microspheres with round and smooth surfaces. By contrast, when TEOS was used, resultant nanoparticles have poor surfaces. During nucleation process of Nano-silica, silicic acid can also acts as nucleating agent providing a platform for the growth of nanoparticles with symmetric structure. Findings further indicated that the reaction proceeds by first silicic acid participates in the reaction, and the dimer and trimer molecules then react with the surface of silicic acid molecules; the same products could be produced by different reactions.

» Author: Xianfa Jiang, Xiaoning Tang, Lihong Tang, Bin Zhang, Huaming Mao
» Reference: 10.1016/j.ceramint.2019.01.067
» Publication Date: 15/04/2019
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
