
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Pectin-assisted dispersion of exfoliated boron nitride nanosheets for assembled bio-composite aerogels
Boron nitride nanosheets (BNNSs) were prepared via the exfoliation of hexagonal boron nitride in isopropyl alcohol. Extremely stable BNNSs dispersions were obtained after the ultrasonication in pectin aqueous suspensions, and the bio-composite aerogels were fabricated via the freeze-drying process. The digital photographs of pectin/BNNSs aqueous suspensions and Fourier-transform infrared spectroscopy results showed that there was a strong interfacial interaction between BNNSs and pectin macromolecular chains. Owing to the excellent dispersion and intensive interaction, the thermal stability, compressive strength and flame retardant properties of pectin/BNNSs bio-composite aerogels were significantly improved. Compared to neat pectin aerogel, pectin/BNNSs-2 (mass ratio of pectin and BNNSs, 10/1) possessed improved onset thermal decomposition temperature (by 9 °C), enhanced compressive strength (by 119%), reduced peak heat release rate (by 45%) and peak CO2 production (by 53%) at cone radiation intensity of 60 kW/m2. Residue analysis indicated that the presence of BNNSs promoted the carbonization of pectin aerogels.

» Author: Wei Yang, Anthony Chun Yin Yuen, Peng Ping, Rui-Chao Wei, Lei Hua, Zheng Zhu, Ao Li, San-E Zhu, Li-Li Wang, Jing Liang, Timothy Bo Yuan Chen, Bin Yu, Jing-Yu Si, Hong-Dian Lu, Qing Nian Chan, Guan Heng Yeoh
» Reference: 10.1016/j.compositesa.2019.02.003
» Publication Date: 04/02/2019
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
