
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Fabrication and tribological properties of a self-lubricating wear-resistant coating based on structural coupling
To improve the traditional laser cladding self-lubricating coating technique, a new type of self-lubricating composite coating is proposed in this study. This novel structural-coupling self-lubricating wear-resistant coating (SSWC) is fabricated on stainless steel using a laser cladding +?vacuum pressure thermal-diffusion welding (VPTW) process. The coating has an interlaced-stripe structure from an organic combination of separated wear-resistant units (WUs) and self-lubricating units (SUs), which are prepared using NiCrSiB powder and Cu-coated graphite composite powder, respectively. The WUs have a microstructure consisting of a Ni-rich ?- (Ni, Fe) matrix and Cr-rich carbide and boride precipitates, and the SUs primarily consist of Cu matrix and graphite. Distinctive microstructures determine the obvious increase in the hardness of the WUs compared to the substrate and the decrease in the hardness of the SUs. As a result, microhardness with alternating softness and hardness occurs on the surface of the SSWC. The tribological properties of the SSWC are evaluated through the reciprocating friction and wear test compared with the as-received substrate, NiCrSiB coating and Cu-G coating at room temperature. The results exhibit considerably better antifriction properties of the SSWC compared to other wear specimens. This property can be attributed to the positive role of the SUs contained in the SSWC, which have a self-lubricating property and promote the formation of tribofilm with a lubricity and protection on the worn surface of WUs by sliding action. The wear mechanism of SUs is mainly abrasive wear. In contrast, the main wear mechanism of WUs varies with the sliding time: abrasive wear at the initial stage that shifts to delamination wear and abrasive wear after long-term sliding due to the generation of tribofilm. Additionally, a synergistic relationship between the WUs and SUs was observed during the wear process, which can lead to the specific tribological properties of the SSWC.

» Author: Hang Zhao, Yu-feng Liu, Bin Xu, Yan-jun Lu, Chao-lan Zhou, Xiao-yu Wu, Jian-jun Li
» Reference: 10.1016/j.ceramint.2018.11.064
» Publication Date: 15/02/2019
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
