
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Simultaneous nitrification-denitrification and membrane fouling alleviation in a submerged biofilm membrane bioreactor with coupling of sponge and biodegradable PBS carrier
Simultaneous nitrification-denitrification (SND) was achieved in submerged biofilm membrane bioreactor (SBF-MBR) treating low carbon/nitrogen (C/N) ratio wastewater. A novel bio-carrier coupling of sponge and biodegradable poly(butanediol succinate) (PBS) was applied as external carbon source and biofilm carrier. Result represented that NH4+-N and total nitrogen removal efficiencies were high of 99.1% and 94.3% in the SBF-MBR. Protein (PN) contents from SND-biofilm were reduced by 10.5% and 44.3% in TB-EPS and LB-EPS, while polysaccharides (PS) were reduced by 45.8% and 34.8%, respectively. 3D-EEM spectra indicated that protein-like, humic acid-like and fulvic acid-like substances were the main components in EPS and their peak intensities were reduced. Additionally, membrane fouling of SBF-MBR was improved after the achievement of biofilm. Microbial community analysis showed that Simplicispira, Thauera, Desulfovibrio, Dechlorobacter and Acinetobacter were dominant genus, which indicated co-existence of nitrifying bacteria, heterotrophic denitrifiers and aerobic denitrifiers in the SBF-MBR.

» Author: Fei Han, Wei Ye, Dong Wei, Weiying Xu, Bin Du, Qin Wei
» Reference: 10.1016/j.biortech.2018.09.026
» Publication Date: 06/09/2018
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
