AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Cooperative parallel grouping genetic algorithm for the one-dimensional bin packing problem
Evolutionary algorithms have been reported to be efficient metaheuristics for the optimization of several NP-Hard combinatorial optimization problems. In addition to their ability to solve difficult and complex problems in reasonable execution times, parallelized versions of evolutionary algorithms are reported to explore and exploit the problem search space more effectively than their sequential counterparts. The Island Model, where the population of a given run is divided into semi isolated subpopulations, is a popular parallelization approach for evolutionary algorithms such as Grouping Genetic Algorithms (GGA). Although the nature of GGAs is very suitable for coarse-grained parallel processing, designing an Island-parallel model for them is not a straightforward task. Selecting the communication topology, deciding migration and assimilation strategies, adjusting the migration rate and frequency, and using efficient diversification techniques are some of the important issues that needs to be covered in a successful Island-parallel Model. In this study, we propose a novel, scalable Island-parallel GGA (IPGGA) for the well-known combinatorial optimization Problem 1D Bin-Packing (1DBPP). We provide a thorough experimental evaluation of the parallel model and report significant improvements on the Hard28 problem instances by outperforming the state-of-the-art genetic algorithms. Additionally, we analyze and evaluate the parallelization parameters of IPGGA with an emphasis on problem search-space diversity and report several interesting results.
» Author: Tayfun Kucukyilmaza, Hakan Ezgi Kiziloz
» Reference: 10.1016/j.cie.2018.08.021
» Publication Date: 23/08/2018
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es