
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Machine leaning aided study of sintered density in Cu-Al alloy
The mechanical properties of powder metallurgy (PM) materials are closely related to their density. In this case we demonstrate an approach of utilizing machine-learning algorithms trained on experimental data to predict the sintered density of PM materials. Descriptors were selected from the features including processing parameters, chemical composition, property of raw materials and so on. And the training data are collected by the experimental setup in our lab and the literatures on five kinds of P/M alloys. The multilayer perceptron model (MLP) outperformed other four regression and neutral network models with high coefficient of correlation and low error. The sintered density predicted by MLP model agreed well with the experimental data with a tolerable error less than 0.028, which confirms its capability over P/M materials design procedures. Then the obtained MLP model is used for Cu-9Al P/M alloy to guide selecting the processing parameters to reach the expected sintered density of 0.88. The Cu-9Al powders were fabricated with the predicted parameters including the specific shape factor, particle size, pressing pressure and sintering temperature, and the obtained relative sintered density is 0.885.

» Author: Zhenghua Deng, Haiqing Yin, Xue Jiang, Cong Zhang, Kaiqi Zhang, Tong Zhang, Bin Xu, Qingjun Zheng, Xuanhui Qu
» Reference: 10.1016/j.commatsci.2018.07.049
» Publication Date: 01/12/2018
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
