AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Machine leaning aided study of sintered density in Cu-Al alloy
The mechanical properties of powder metallurgy (PM) materials are closely related to their density. In this case we demonstrate an approach of utilizing machine-learning algorithms trained on experimental data to predict the sintered density of PM materials. Descriptors were selected from the features including processing parameters, chemical composition, property of raw materials and so on. And the training data are collected by the experimental setup in our lab and the literatures on five kinds of P/M alloys. The multilayer perceptron model (MLP) outperformed other four regression and neutral network models with high coefficient of correlation and low error. The sintered density predicted by MLP model agreed well with the experimental data with a tolerable error less than 0.028, which confirms its capability over P/M materials design procedures. Then the obtained MLP model is used for Cu-9Al P/M alloy to guide selecting the processing parameters to reach the expected sintered density of 0.88. The Cu-9Al powders were fabricated with the predicted parameters including the specific shape factor, particle size, pressing pressure and sintering temperature, and the obtained relative sintered density is 0.885.
» Author: Zhenghua Deng, Haiqing Yin, Xue Jiang, Cong Zhang, Kaiqi Zhang, Tong Zhang, Bin Xu, Qingjun Zheng, Xuanhui Qu
» Reference: 10.1016/j.commatsci.2018.07.049
» Publication Date: 01/12/2018
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es