AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Fast and controllable reduction of graphene oxide by low-cost CO2 laser for supercapacitor application
Direct reduction of graphene oxide has been regarded as the economically viable route for large-scale synthesis of graphene. However, the currently known methods suffer from either poor reduction efficiency or involve multi-step and energy-intensive reduction processes. Here, we demonstrate a remarkably fast, single step as well as highly efficient reduction technique to produce high-quality multilayer graphene film using a compact and low-cost CO2 laser pyrolysis. Thanks to the intrinsically high absorptivity of graphene oxide in the near- and mid-infrared regions, the irradiation of CO2 laser generates instantaneous and strong localized heating on it and thus burst apart the oxygen functional groups from the graphene oxide layers. The extent of reduction in the synthesized multilayer graphene films can be fruitfully controlled by variation of laser processing parameters such as laser intensity, scanning speed and shifting pitch. To prove the worth of this method, the graphene films were used as the binder-free and self-standing electrode for symmetric supercapacitor cell. The electrochemical performance data shows that specific capacitance and cyclic stability has a contrasting relation with the reduction efficiency. We believe that this CO2 laser-based reduction method could guarantee a high outturn of multilayer graphene and its composites for innumerable applications.
» Author: Dhrubajyoti Bhattacharjya, Chang-Hyeon Kim, Jae-Hyun Kim, In-Kyu You, Jung Bin In, Seung-Mo Lee
» Reference: 10.1016/j.apsusc.2018.08.089
» Publication Date: 31/12/2018
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es