
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
A new method to study human metabolic rate changes and thermal comfort in physical exercise by CO2 measurement in an airtight chamber
The human metabolic rate is probably the most fundamental but least accurately assessed parameter in thermal comfort research and practice. This study aims to test the dynamic changes of the metabolic rate and its effects on thermal comfort perception. An airtight chamber (2?×?2?×?2m3) was utilized to measure subjects’ accumulated CO2 production, and metabolic values then were calculated based on indirect calorimetry theory. During the test, 31 subjects were first asked to ride a spinning bike for 8 min at different intensities, and then asked to remain sitting for 22 min. The results showed how the human metabolic rate changed during different exercise periods. It took the human body 5-6 min to reach a new exercising metabolic level while the human body needed 7-9 min to recover from exercise to a normal sedentary state. The dramatic changes in metabolic rate markedly influenced subjects’ thermal sensation and thermal comfort perception. These findings provide a general principle of metabolic rate changes and could serve as a reference for future thermal comfort research.

» Author: Wenjie Ji, Maohui Luo, Bin Cao, Yingxin Zhu, Yang Geng, Borong Lin
» Reference: 10.1016/j.enbuild.2018.08.018
» Publication Date: 18/08/2018
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
