AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
A refined quasi-3D zigzag beam theory for free vibration and stability analysis of multilayered composite beams subjected to thermomechanical loading
A refined four-unknown quasi-3D zigzag beam theory is developed to model the free vibration and buckling behaviors of multilayered composite beams subjected to axial mechanical loading (e.g., distributed load and terminal force) and uniform temperature variation. Types of the composite beams considered include laminated composite beams, sandwich beams with composite face sheets, and fiber metal laminates. The proposed theory accounts for not only thickness stretching but also interlaminar continuity of transverse shear stresses and displacements. Associated eigenvalue problems for various boundary conditions are derived using the Ritz method. Accuracy and effectiveness of the theoretical predictions are verified by comparison with existing results and present finite element simulations. The theory is employed to quantify the effects of axial distributed load/terminal force and temperature variation on free vibration and buckling for different boundary conditions, geometric parameters and material properties. The present theory could produce sufficiently accurate predictions of natural frequencies and buckling capacities of multilayered beams at a very low computational cost.
» Author: Bin Han, Wei-Wei Hui, Qian-Cheng Zhang, Zhen-Yu Zhao, Feng Jin, Qi Zhang, Tian Jian Lu, Bing-Heng Lu
» Reference: 10.1016/j.compstruct.2018.08.005
» Publication Date: 15/11/2018
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es