
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
A refined quasi-3D zigzag beam theory for free vibration and stability analysis of multilayered composite beams subjected to thermomechanical loading
A refined four-unknown quasi-3D zigzag beam theory is developed to model the free vibration and buckling behaviors of multilayered composite beams subjected to axial mechanical loading (e.g., distributed load and terminal force) and uniform temperature variation. Types of the composite beams considered include laminated composite beams, sandwich beams with composite face sheets, and fiber metal laminates. The proposed theory accounts for not only thickness stretching but also interlaminar continuity of transverse shear stresses and displacements. Associated eigenvalue problems for various boundary conditions are derived using the Ritz method. Accuracy and effectiveness of the theoretical predictions are verified by comparison with existing results and present finite element simulations. The theory is employed to quantify the effects of axial distributed load/terminal force and temperature variation on free vibration and buckling for different boundary conditions, geometric parameters and material properties. The present theory could produce sufficiently accurate predictions of natural frequencies and buckling capacities of multilayered beams at a very low computational cost.

» Author: Bin Han, Wei-Wei Hui, Qian-Cheng Zhang, Zhen-Yu Zhao, Feng Jin, Qi Zhang, Tian Jian Lu, Bing-Heng Lu
» Reference: 10.1016/j.compstruct.2018.08.005
» Publication Date: 15/11/2018
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
