
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Steering reduction and decomposition of peroxide compounds by interface interactions between MgO thin film and transition-metal support
The detection, removal and reduction of hydrogen peroxide and organic peroxides is of significant importance for its increasing application in the areas of environment, food, electrochemistry and clinical laboratory. Herein the dissociative adsorption behavior of H2O2 and organic peroxides on ultrathin magnesia (001) films deposited on transition metal is uncovered for the first time by employing periodic density-functional theory calculations with van der Waals corrections. Splitting of H2O2 on bulk MgO(001) is highly endothermic process with activation barrier 1.85 eV, indicating it is extraordinarily difficult to dissociate H2O2 on pristine MgO(001). The H2O2 is dissociated smoothly and reduced to surface hydroxyls on MgO(001)/TM, and the dissociative adsorption energies of all the considered fragmentation configurations are substantially negative, demonstrating dissociation and reduction of H2O2 is thermodynamically favorable. The mechanism of reactivity enhancement for energetically and dynamically favorable decomposition of H2O2 on supported magnesia is elucidated by characterizing the geometric structures and electronic properties. The fragmentation and reduction of diethyl peroxide and peroxyacetone are also studied to reveal the catalytic activity of ultrathin magnesia toward splitting organic peroxides. The results are wished to provide useful clue for detecting and reducing hydrogen peroxide and organic peroxides by employing oxide-metal hybrid nanostructure.

» Author: Zhenjun Song, Bin Zhao, Qiang Wang, Peng Cheng
» Reference: 10.1016/j.apsusc.2018.08.071
» Publication Date: 07/08/2018
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
