AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Polymer blend nanofibers containing polycaprolactone as biocompatible and biodegradable binding agent to fabricate electrospun three-dimensional scaffolds/structures
To develop tissue engineering scaffolds that possess similar morphological structures to natural extracellular matrices (ECMs) is a major technological challenge. Herein, the feasibility of utilizing polycaprolactone (PCL) as biocompatible and biodegradable binding agent to fabricate electrospun three-dimensional (3D) scaffolds has been demonstrated. The obtained 3D scaffolds are soft while elastic, and they possess interconnected and hierarchically structured pores with sizes in the range from sub-microns to hundreds of microns; hence, they are morphologically similar to natural ECMs thus well suited for cell functions and tissue formation. It is envisioned that various thermoplastic polymers could be fabricated into 3D nanofibrous scaffolds/structures by first making blend nanofibers with PCL followed by processing via the thermally induced (nanofiber) self-agglomeration (TISA) method and finally being thermally stabilized, and the resulting electrospun 3D nanofibrous scaffolds/structures might to be useful for a variety of applications (particularly those related to tissue engineering).
» Author: Tao Xu, Zhipeng Liang, Bin Ding, Quan Feng, Hao Fong
» Reference: 10.1016/j.polymer.2018.07.074
» Publication Date: 30/07/2018
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es