
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Influence of sustained loading on fracture properties of concrete
To investigate the effects of sustained loading on the fracture properties of concrete, basic creep and three-point bending (TPB) tests were conducted on the pre-notched beams. The specimens were first subjected to two sustained loading levels, i.e. 30% peak load and the initial cracking load over 115 days. Then, they were moved out from the loading frames and tested under TPB loading until failure. The critical crack propagation length (?ac), the peak load (Pmax) and the fracture energy (Gf) were measured in the tests, and the unstable fracture toughness (Kun IC) was calculated accordingly. Furthermore, based on the load-displacement curves obtained in the TPB tests, the energy dissipation was derived using the modified J-integral method. By enforcing balance between the energy dissipated and the energy caused by the fictitious cohesive force acting on the fracture process zone, the tension-softening constitutive laws under the two sustained loading levels were established and also simplified as bilinear forms for practical applications. Finally, the effects of sustained loading on the fracture properties were examined by comparing with the tested results from the aging specimens in the static TPB tests. The test results indicate that low sustained loading had no effects on all fracture properties of concrete investigated in this study, while under high sustained loading, ?ac and Kun IC increased and Gf and Pmax almost remained unchanged. Meanwhile, a smaller free-stress crack opening displacement was obtained under the high sustained loading level, which indicates a shorter FPZ length formed, resulting in the increase in brittleness of concrete.

» Author: Wei Dong, Xue Zhang, Bin Sheng Zhang, Qiao Wu
» Reference: 10.1016/j.engfracmech.2018.07.034
» Publication Date: 24/07/2018
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
